Drug Information Journal, Vol. 34, pp. 605-615, 2000
Printed in the USA. All rights reserved.

0092-8615/2000
Copyright © 2000 Drug Information Association Inc.

PROPERTIES OF THE HUI AND WALTER

AND RELATED METHODS FOR
ESTIMATING PREVALENCE RATES
AND ERROR RATES OF
DIAGNOSTIC TESTING PROCEDURES

MICHAEL D. SINCLAIR, PHD

Senior Statistician, Mathematica Policy Research, Princeton, New Jersey
JOSEPH L. GASTWIRTH, PHD

Visiting Scientist, Division of Cancer Epidemiology and Genetics, National Cancer Institute, and
Professor of Economics and Statistics, The George Washington University Department of Statistics,
Washington, District of Columbia

When a confirmatory test is completely accurate or has known low error rates, the
sensitivity and the specificity of a screening test can be estimated. When the error rates
Jfor the confirmatory test are unknown, Hui and Waiter (2) presented a method for
estimating the sensitivity and specificity of both the screening and the confirmatory tests
using the tests on two populations with different prevalence rates of the infection. The
method requires that the tests have equal error rates in the two populations. When this
requirement is not met, we show that the estimated prevalence rates are robust when the
difference in the prevalence rates of the two subpopulations is large. An alternative
design, requiring only one population, but other assumptions, is also described.
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INTRODUCTION

A RECENT PAPER BY Hui and Xiao (1)
discusses the evaluation of diagnostic tests
when a gold standard or perfect confirmatory
test is not available. Hui and Walter (2) de-
veloped a method to estimate the error rates
in a diagnostic test when it and a second test
are applied to two groups of individuals. This
procedure requires two subpopulations with
different prevalence rates in which each test

Reprint address: Dr. Michael D. Sinclair, Mathematica
Policy Research, 600 Alexander Park, P.O. Box 2393,
Princeton, NJ 08543-2393.

has the same error rates. Goldberg (3) noted
that obtaining two subpopulations satisfying
this criteria may be difficult. For example,
Gastwirth (4) cited data showing that the ac-
curacy of the early ELISA screening test for
the HIV virus differed in men and women.

This paper explores the bias in the Hui
and Walter (2) method when the assumption
of equal classification errors in the two sub-
populations is violated. First, we will review
the Hui and Walter (2) method and discuss
its properties when the assumption of equal
classification errors is violated. Second, we
present an alternative design using only one
population. Finally, we discuss a numerical
study which examines the sensitivity of the
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estimated accuracy rates to violations in the
assumptions required for both methods.

Study Designs for Estimating the
Accuracy of Screening Tests

We will assume that two tests with dichoto-
mous responses are applied to a sample of
n, individuals from each of two subpopula-
tions g, g=1 or 2. The true classification
status of each sample unit is unknown and
each test has unknown sensitivity and speci-
ficity. Following Hui and Walter (2), we let
7, denote the true prevalence rate of the indi-
viduals in subpopulation g and let o, and B,
denote the false positive and false negative
rates, respectively, associated with each testr,
r= 1 or 2, for subpopulation g. The respective
specificities and sensitivities of the two tests
are one minus each of the error rate parame-
ters. For each subpopulation g, the sample
frequencies associated with each of the four
possible combinations of Test 1 and Test 2
results can be represented by a 2 x 2 table as
in Figure 1. In this table we let Py denote
the probability of obtaining a combination of
Test 1 and Test 2 responses associated with
row i and column j of the 2 x 2 table for sub-
population g, and similarly ng; as the observed
frequency of test outcomes in each cell for a
given sample size n, from subpopulation g.
With this notation and assuming con-
ditional independence between the two test
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error rates, the probabilities, Py, are as in

.

Py =m, (1~ Bid(1 —PBy) +(1 — =)
(ouyg * 01g)
Por =7 (Big)(1 = By) + (1 — me)(1 = 0uyp)
(o)
Poa =1 (1= Byg) Bog + (1 = m)(0ug (1 — 0)
Pyo =, (Big * Bg) + (1 — m)(1 — 0uyp)

(1 - o). 6))

Hui and Walter (2) assume that B, = Py,
Ol = O, for r=1 and 2, and T, # 7, that is,
the test errors are equal for both subpopula-
tions, but the prevalence rates differ. When
two subpopulations satisfying these assump-
tions are available, the number of indepen-
dent cell probabilities is equal to the number
of parameters (six in total), so estimation is
possible. Parameter estimates in terms of the
observed cell probabilities, denoted by p;,
are presented along with their variances ob-
tained from the asymptotic information ma-
trix in Hui and Walter’s (2) paper.

A New Design Using One Population

In this section we present an alternate design
which may allow for the evaluation of two
testing procedures when two populations

Test 1 Test 2 Outcome
Outcome - .
Positive | Negative Total
Positive ng, n,, n,
Negative Ny, Ny N,
Total n,, n,, n,
ww

FIGURE 1. Cross classification of Test 1 and Test 2 results.
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with equal test error rates are not available,
As in the Hui and Walter (2) method, we
assume that the test error rates are indepen-
dent.

In this method a sample of n individuals
is randomly divided into two groups. Since
the focus of these procedures is to evaluate
the screening test, we administer the screen-
ing test twice to each individual in group
1, and the screening test and a second test
(preferably a confirmatory test) to each indi-
vidual in Group 2. With this design, we have
a common prevalence rate, %t =, =T,, the
error rates for the screening test, o, = o), =
o =0y and B, =PBy=P,,=p, and error
rates for the second test applied to group 2,
0, = 0 and B, =Py, to yield a total of five
parameters. The two 2 X 2 tables associated
with this design contain only a total of four
degrees of freedom (There are still six de-
grees of freedom, but two are redundant, and
so only four are available for estimation).
Hence, in order to estimate the accuracy rates
an additional assumption is needed. There-
fore, we assume that the gain in both the
specificity and sensitivity of the second test
relative to the first to be equal. In other
words, the second test in the second group
either lowers or increases the false positive
and false negative rate associated with the
screening test by an unknown factor, ¢, such
that, B, =c x B;, and o, = ¢ X ¢ for ¢ > 0. We
will refer to this condition as the equal frac-
tion reduction requirement (EFR).The ex-
pected probabilities associated with this
model are given in (2)

Py =7 [(1 = Bi)(1 = Bp)] + (1 = m)[(ey o))
= [(1-B)(1 —cB)]+ (1 ~m)
[(cod)]
Pz = [(B)(1 = Bg)] + (1 = m)[(1 ~ ou)(0)]
=7 [(B(1 =Bl + (1 -1 — o)
(cg0u)]
Poi = [(1 = B1)Bg] + (1 - m)[(a)(1 - )]
=7 [(1 - Biehi] + (1 - m)(aw)
(1 = c0)]
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P =m0 [(Bi Bl + (1 - m)[(1 - o)1 ~ o4,)]
=7 [(cBD]+ (1 -~ m[(1 - o)
(1= c,0)] 3)

for g=1 and 2, where ¢, = 1 for subpopula-
tion g = 1 given a repeat of the screening test.
As with the Hui and Walter (2) model, we
now have a saturated model for which unique
parameter estimation can be conducted.
Closed form maximum likelihood estimates
for the model parameters are not obtainable
$0 estimates are obtained by numerical tech-
niques.

METHODS

We conducted a numerical study of the bias
in the Hui and Walter (2) method when the
two subpopulations selected do not have
equal classification errors and a similar study
for the proposed single population design
when the second test, preferably a confirma-
tory test, does not reduce the false positive
and false negative rates in the same propor-
tion. We used two approaches to examine the
robustness of each design when the required
error rate assumptions were violated. First,
we generated the expected cell frequencies
that would be obtained in each of two sub-
groups for a specified sample size of 1000 (or
4000 for the smaller prevalence rates studied)
individuals in each subgroup. We generated
the expected cell frequencies based on a vari-
ety of specified parameter values using the
cell probabilities given in equations (1) or
(2). To keep the number of possible parame-
ter values to a manageable level, we limited
the parameter values for the prevalence rate
in each subgroup to paired values of .20 and
.40 or .02 and .04 and examined error rates
between .01 and .10. Second, we conducted
a Monte-Carlo simulation in which we ran-
domly generated combined test outcomes for
1000 (or 4000 ) individuals in each subgroup
based on the same parameter values, We re-
peated this process for 2000 (or 4000 for the
smaller prevalence rates) iterations to gener-
ate 2000 2 x 2 tables with 1000 observations
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in each (or 4000 2 x 2 tables with 4000 obser-
vations in each) for each of the two sub-
groups. At each iteration, we prepared esti-
mates of the parameters appropriate for each
design from the pair of tables. Ultimately,
this produced 2000 (or 4000) sets of esti-
mates for each set of parameter values evalu-
ated for each design. From these sets, we
obtained the mean value and a standard error
of the parameter estimates. v

Because the sampling variability in the
Monte-Carlo method is large relative to the
bias in the estimates, we use the parameter
estimates obtained from the expected cell fre-
quencies to estimate the bias in the estimates
and the standard errors obtained from the
Monte-Carlo simulation to estimate the sta-
tistical precision in the estimates. The Monte-
Carlo estimates of the standard error in the
estimates are needed because the correspond-
ing estimates from the expected frequency
approach are based on the design assump-
tions which are violated in the samples to
address the robustness of the procedures. As
indicated above, the iterations associated
with the smaller prevalence rates are more
variable, so we conducted 4000 rather than
2000 iterations, and used a sample size of
4000 rather than 2000 to help stabilize the
results.

We prepared the parameter estimates in
each situation using the SAS (5) NLIN Gauss-
Newton weighted least squares procedure. A
general description of this method can be
found in Bard (6) and Jennrich and Moore
(7). Bradley (8) showed these procedures to
be equivalent to maximum likelihood esti-

mates for the class of probability distribu-.

tions including equation (1) and (2). Further
details on the estimation methods are dis-
cussed in Sinclair (9).

RESULTS

Numerical Estimates of the Bias in the
Hui and Walter Estimates When the
Two Subpopulations Do Not Have the
Same Error Rates

The bias in the estimates obtained from the
Hui and Walter (2) method are given in Ta-
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bles 1 and 2 and Figures 2 and 3. In this
study, the false positive and false negative
rates from Test 1 for the first subpopulation
were set to 5% (o, = B, = .05) and these val-
ues for Test 2, a confirmatory test, were set
to 2% (0, = B, = .02). Figures 2 and 3 present
the bias in the estimated prevalence rate for
Population 1 when the screening test error
rates in the second population differ from
those in the first by less than or equal to
0.05 (less than a unit multiple of the first
population values). In Figures 2 and 3, we
set the confirmatory test error rate to be the
same in both subpopulations so that only the
screening test error rates violated the Hui
and Walter (2) assumptions. While these
graphs are specific to these examples, they
illustrate the general bias properties of the
Hui and Walter (2) method for the prevalence
rate in the presence of a violation of the equal
error rate assumption.

A study of both the bias in the estimated
prevalence rate and error rates is presented
in Tables 1 and 2. Eight numerical examples
are presented in each table. In examples one
through four, as in Figures 2 and 3, only the
screening test error rates are larger or smaller
in the second subpopulation and the error
rates of the confirmatory test remain the
same. In examples five through eight, both
the screening test and the confirmatory test
error rates are larger or smaller in the second
subpopulation. Columns (2) and (3) of Tables
1 and 2 present the estimated prevalence rates
from the screening and confirmatory tests,
respectively. These estimates do not account
for the error rates of the tests and are clearly
biased. Note that Figures 2 and 3 explore
the bias in the prevalence rate for the first
population for a broader range of combina-
tions than those represented by examples 1
to 4 in Tables 1 and 2.

Table 1 considers prevalence rates of .20
and .40. Example A illustrates the unbiased-
ness of the Hui and Walter estimates when
the error rates are the same for both subpopu-
lations. By comparing examples one and two
(five and six) to examples three and four
(seven and eight), we notice that the bias in
the estimates is more severe when the larger
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of the error rates is associated with the larger
of the two prevalence rates. In example one,
the screening test error rates in the second
subpopulation (with a prevalence rate of .40)
are larger (0, and P, = .05 in pop. one, and o,
and P, = .06 in pop. two), while in example 3
the error rates in the second population are
smaller (0, and B, = .05 in pop. one, and o,
and B, = .04 in pop. two). The Hui and Walter
estimates of the prevalence rate in example
one are .20906 and .41350 with a bias of
00906 and .01350, respectively. In Example
3, the estimates of the prevalence rate are
.19251 and .38926 with a bias of —.00749
and —.01074. This is even more apparent in
Figure 2. The bias in the quadrant in which
the second population error rates are higher
is much larger than the bias in the quadrant
associated with smaller error rates for Popu-
lation 2.

Assuming that the screening test error
rates are higher than those of the confirma-
tory test, a large portion of the bias in the
estimates of the prevalence rate in these ex-
amples is due to the differences in the error
rates of the screening tests in the two subpop-
ulations. In Example 5, when both the error
rates are increased, the estimates of the prev-
alence rate are .21247 and .41856 with a
respective bias of .01247 and .01856. Com-
paring this with the results in Example 1
(.00906 and .01350), the level of bias is only
modestly larger.

Table 2 presents examples for prevalence
rates of .02 and .04. (Note that in these tables
the results are based on a sample size of 4000
individuals from each subpopulation). As in
Table 1, the bias in the estimates is more
severe when the larger of the error rates is
associated with the larger of the two preva-
lence rates. The effect is more substantial,
however, than that examined in Table 1. In
example 1, the larger error rates are associ-
ated with a prevalence rate of .04, which
yields estimates of the prevalence rate at
.03123 and .06178 with a bias of .01123 and
.02178, respectively. In contrast, in example
three, in which the larger error rates are asso-
ciated with the prevalence rate of .02, we
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obtain prevalence rate estimates of .01949
and .03908 with bias levels of —.00051 and
—.00092. This relationship between the size
of the error rates and the prevalence rates
can be seen by comparing Figures 2 and 3.
Overall, as the difference in the prevalence
rates in the two subpopulations increases, the
bias in the estimates becomes smaller. Using
prevalence rates of .20 and .60 (not pre-
sented), we found that the bias in the preva-
lence rate estimates becomes quite small and
that the relationship between the size of the
error rates and the prevalence rates on the
bias of the prevalence rate estimates is also
smaller.

In contrast with the prevalence rates esti-
mates obtained from the Hui and Walter (2)
method, the estimated accuracy of the screen-
ing and confirmatory tests appear to be sensi-
tive to the violation in the equal error rate
assumption. Although the estimated sensitiv-
ity and specificity of the screening test is
noticeably more robust than those for the
confirmatory test, they still appear to be
rather sensitive. In Example 1 in Table 1, the
screening test error rates are 20% higher in
subpopulation 2 than in subpopulation 1 (o
and B, =.05 in Population 1 and o, and B, =
.06 in Population 2), to yield estimated
screening test error rates of .04389 and
.06589 for o, and P, respectively. Hence a
fairly modest violation in the required as-
sumptions created a relatively large differ-
ence between the estimated and actual val-
ues. Furthermore, the estimated error rates
for each test do not lie between the actual
values in the two subpopulations.

As indicated, the confirmatory test error
rate estimates are considerably more sensi-
tive. As the level of the violation increases,
one of the confirmatory test error rates will
approach or lie on the zero boundary while
the other will become larger than .05. In ex-
ample 3, in Table 1, the screening test error
rates are smaller in the second subpopulation
(o and B, = .05 in Population 1 and o, and
{3, =.04 in Population 2) and the confirmatory
error rates remain the same in both subpopu-
lations at .02. For this example, the Hui and
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FIGURE 2. Bias in the first subpopulation estimate of prevalence when error rates in
the two subpopulations differ. Actual prevalence in the first population is .20 (20%).
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The Hui and Walter and Related Methods

Walter (2) estimates of o, B, 0, and B, are
.05345, .03403, .02414, and .00000, respec-

tively.

Numerical Estimates of the Bias in the
Single Population Method

Table 3 presents the bias in the estimates
obtained from the single population design
when the false positive and the false negative
rates for the confirmatory test are not an
equal fraction of the screening test error
rates. Ten examples are presented for a
screening test that has a false positive rate
and a false negative rate of .05. In Example
1, the confirmatory test in the second subpop-
ulation reduces both the screening test’s false
positive and false negative rate to one fourth
(25%) of the screening test rate. Hence, the
single population method’s EFR assumption
is met and the estimates are unbiased (note
the single study method estimate of ¢ is equal
to .25). In the remaining examples the EFR
assumption is violated by various degrees.
As for the Hui and Walter (2) method, we
have prepared some examples using the un-
derlying prevalence rate of .20 (Examples 2
to 7) and .02 (Examples 8 to 10).

Overall, the estimated false positive rate
(1 — specificity) of the screening test (o)
does not appear to be sensitive to a modest
violation in the EFR assumption. The esti-
mated false negative rate (1 — sensitivity) for
the screening test (B;) is somewhat more sen-
sitive in these examples, but still yields esti-
mates reasonably close to .05. Even in exam-
ples 4, 5, 9, and 10, in which the EFR
assumption is violated by a factor of 2, the
bias in this estimate is less then .022. Of
course, in low prevalence situations (Exam-
ples 8 to 10) where there are relatively few
positive cases, the standard error of the esti-
mated false negative rate is large. Further-
more, the estimates of screening test error
rates (in particular the estimated false nega-
tive rate) are usually more accurate than
those obtained when assuming that the con-
firmatory test is error free (see Column 3 in
Table 2).

The single population design also yields
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quite robust estimates for the prevalence rate
and reasonable estimates of the rate, c, of the
relative error rates of the confirmatory test
to those of the screening test. The bias in the
prevalence rate estimates are less than .008
across the 10 examples presented and these
estimates are considerably more accurate
than the estimates from the uncorrected con-
firmatory test (Column 3). The estimate of
the common reduction in error from the con-
firmatory test lies between the actual rates,
although it is not the midpoint.

DISCUSSION

The Hui and Walter (2) method has proven
to be an effective method for evaluating the
error rates from diagnostic testing when its
underlying assumptions are met. Our results
show that the method yields a robust estima-
tor of the prevalence when the two subpopu-
lations have different error rates provided
that the prevalence rates are quite different.
In contrast, the estimates of the sensitivity
and specificity of the screening test, and the
confirmatory test to an even greater degree,
were seen to be affected by modest violations
of the assumption that the error rates in the
two subpopulations were the same. The
method appears to be less sensitive to this
assumption when the error rates of both tests
are larger in the subpopulation with the lower
prevalence.

An alternative method that randomly
splits a sample into two subgroups, but as-
sumes that the confirmatory test reduces the
error rates of the screening test by the same
fraction (EFR), is proposed. The estimates
of both the accuracy of the screening test and
the prevalence rates were robust to moderate
violations of the EFR assumption. Further-
more, the design provides an estimate of the
relative error in the confirmatory that approx-
imates the average reduction in the two error
rates when the EFR assumption is violated.

When three tests are available, Irwig and
Walter (10) showed that one can estimate the
accuracy rates of the tests and the prevalence
rates without assuming a relationship be-
tween the test error rates and without the



86000° (06.v0°) 86020 (vz622) 88vey” (018SL) LELZ0° (¥£9007) GS6V0° LEBYS” €20S0° Sevi0 G2 005 20 o1

59000 (0S220°) se610° (£8201°) 26¥Se (S9611°) 96¥€0° (1LL¥007) 0S0SO" +2L6€  L¥0SO" GLIEO™ 005 se 20 6

92000 (55020 vZ610° (S26017) 861S2 (OvBLL) 20100° (¥BYOO) 2LOGO™ 19S6E"  €€0S0° O06LE0°  0OGE 174 20 8

90v00°  (18£10°) 90v02" (219917 09602° (80LED’) 206S0° (00L00°) 2LL¥0° 96260° LS0SO°  0S602 <o’ G2 oz L

80200°  (bSE10) 80202 (£€291°) 06622 (PEILEO’) GOVSO™ (16900°) £88¥0° LIE60"  LLLSO° 0S80T SE A 0z 9

1200  (8¥610°) 1£202° (£6102°) 606¥1 (POEPO') G0990° (E0LLO) 06SYO° 9/2€L° 88250° 0SLLS 52 005" oz S

29500  (1s£10°) 2evel” (p86S17) 62662 (££1£0°) 26900° (€0200°) 02€50° 29902° 99SS0°  00S0C° 00§ 74 ir4 4

6£200°  (K0OG1L0’) 68202 (29281°) 8862 (20GE07) vEGSO™ (962007) 998107 LS60L°  G8250° 0SHiS 74 0se oe €

612000  (2/£10°) 18461 (56291°) 68692 (£81£0°) v0SKO™ (91200°) £21S0° 8¥E60°  L¥ESO™ GZ902°  OSGE 74 oc rA

000000 (svero) o2 (609917) G2 (S02e0) SO (26000 SO ZEE€60° ¥8250° 0S.L0C se 174 ir4 1

n ho oA fo) _.ﬁ i pn 3% ®° ﬁﬂ ol Nn ip o} 2p m

aewpsy jo oney jo oney 1
uonendod d
aibuis s( ) u sajew)is3 j0 Jou3 piepuels jo ajewns3 1sa) sajey Jouz W aled W

u| seig sajewfisy poyiow uoneindod ajbuis Aiojewiyjuo) pajoalioduy UORINPaY 1531 3doudjeAdld v
Aoyewsyuod anijL X

3

S0" 01 [enb3 ase ajey aapebap asjeq e pue ajey SAIUSOd asted Bujuasiog [emdy

€ 3navi

‘Paje|ojA ase suopdwinssy Y43 Yl USYM PoyiaW uopeindod 9jBuls sy Jo uopenieas

614



The Hui and Walter and Related Methods

need for a second subpopulation with a dif-
ferent prevalence. All of these methods as-
sume that the test results are independent
given the individual’s true status. In light of
the analysis conducted by Vacek (11) of the
Hui and Walter method (2) when this as-
sumption is violated, one expects that this
conditional independence assumption is es-
sential. A separate study should be conducted
in conjunction with the designs discussed in
this paper to evaluate whether this assump-
tion is met. Other designs along the lines of
Sinclair and Gastwirth (12) that estimate the
dependence parameters could be used in this
process
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